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Abstract. A long structural system with an unstable (subcritical) post-buckling response that subsequently restabil-
izes typically deforms in a cellular manner, with localized buckles first forming and then locking up in sequence.
As buckling continues over a growing number of cells, the response can be described by a set of lengthening
homoclinic connections from the fundamental equilibrium state to itself. In the limit, this leads to a heteroclinic
connection from the fundamental unbuckled state to a post-buckled state that is periodic. Under such progressive
displacement the load tends to oscillate between two distinct values.

The paper is both a review and a pointer to future research. The response is described via a typical sys-
tem, a simple but ubiquitous model of a strut on a foundation which includes initially-destabilizing and finally-
restabilizing nonlinear terms. A number of different structural forms, including the axially-compressed cylindrical
shell, a typical sandwich structure, a model of geological folding and a simple link model are shown to display
such behaviour. A mathematical variational argument is outlined for determining the global minimum postbuckling
state under controlled end displacement (rigid loading). Finally, the paper stresses the practical significance of a
Maxwell-load instability criterion for such systems. This criterion, defined under dead loading to be where the pre-
buckled and post-buckled state have the same energy, is shown to have significance in the present setting under
rigid loading also. Specifically, the Maxwell load is argued to be the limit of minimum energy localized solutions
as end-shortening tends to infinity.

Keywords: Nonlinear buckling, localization, homoclinic, heteroclinic, restabilization, Maxwell criterion.

1. Introduction

Subcritical bifurcation in a long structure will often lead to a localized buckle pattern that is
usefully described as a homoclinic orbit of a dynamical system in which an infinite spatial
co-ordinate x plays the role of time. There has thus been a corresponding flurry of activity in
recent years at the interface between mathematics and mechanics, exploring and describing
such phenomena (see, for example, [1]). The buckling of cylindrical shells [2] and twisted
rods [3, 4] are two important examples now known to display such responses. Although the
nonlinear nature of these problems leads to a certain ‘spatial chaos’ [5], the underlying bifurc-
ation structure of such buckling behaviour is now well understood. Similarly, supercritical
bifurcation, which tends to lead to periodic responses, is again reasonably well documented
[6].

By comparison however, there has only been a modest level of effort expended on systems
that bifurcate in an initially unstable manner but subsequently restabilize. Such behaviour is
common to many structural systems; indeed it could be argued that, unless it fractures or oth-
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erwise collapses, restabilization is typical of any structure that in the first instance is unstable.
The combination calls for an interesting mix of buckling behaviour: the potential to localize
is reflected in the existence of homoclinic connections from the unbuckled equilibrium state
to itself, yet periodicity, associated with the restabilization, must also play a role. Such issues
raise interesting and challenging mathematical questions, some of which are addressed here,
others being left for future work.

The paper has three distinct aims. The first, addressed Section 2, is to introduce the phe-
nomena in question via a simple model, which we choose partly for historical reasons to be
that of an axially-compressed linear elastic strut undergoing moderately large displacements
into a nonlinear Winkler medium. To provide the appropriate response, the foundation itself is
given a constitutive relation that first destabilizes and then restabilizes. Energy minimisation
then leads to an appropriate fourth-order ordinary differential equation (ODE) for the deflec-
tion as a function of a single space variable. The equation includes naturally a parameter that
measures the degree of restabilization against that of the initial destabilization. If the parameter
is large, restabilization swamps the response and all localized (homoclinic) behaviour is lost.
On the other hand if it is small, destabilization holds sway and the response is essentially
unchanged from known homoclinic behaviour. Over an intermediate range, however, the re-
sponse is governed by sets of homoclinic responses of differing lengths that lead in the limit to
heteroclinic connection between the unbuckled and periodically-buckled equilibrium states. In
so doing the fundamental localized response in load—-deflection space oscillates back and forth
over a finite range of loads. At each fold in such a curve, the homoclinic mode picks up an
additional buckling ‘cell’. More details of the numerical and normal-form-analysis techniques
used and more extensive numerical results can be found in [7].

Our second intention, fulfilled in Sections 3 and 5, is to demonstrate the wide range of
applicability of this cellular buckling mechanism in a number of different structural examples.
The mechanism has already been described in a cylinder buckling model in [8] where its
connection with the so-called Maxwell-load condition for calculating realistic failure loads
is discussed. Here we extend those results for the cylinder and also point to applications
arising from our recent studies on a certain sandwich material used in the manufacture of
light structures [9, 10] and on models for geological folding [11, 12].

Thirdly, in Section 4 we point to some more mathematically rigorous ideas for proving
some of the heuristic arguments underlying our explanations and for deciding which among a
sequence of possible numbers of buckled cells may be the minimum energy configuration for
a given end-shortening. This leads to the concept of the Maxwell load, which we first explore
for a hypothetical link model. These results are generalized for smooth systems and variational
arguments are used to show that as end shortening tends to infinity, along the oscillating path
described in Section 2, the minimum energy solutions tend to the Maxwell load.

We should point out that many of the techniques of analysis used transcend structural en-
gineering. For example, the mechanism we describe also has potential application in pattern-
formation problems (Equation (1) below arises in a generalized Swift-Hohenberg partial dif-
ferential equation [13]).



Cellular Buckling in Long Structures 5

F

7R\

(c) (d)

Figure 1. Foundation energy F plotted for f(u) = fi(u) = u — W2 b3 (@) b=02;b)b=2/9,(C) b= 1/4;
(d)b=03.

2. Strut Model

In this section, we work out in detail the process of buckling applied to the canonical dimen-
sionless model of a strut resting on a nonlinear foundation:

either f(u) = fiu) = u —u® + bu?,

'+ Pu’+ f(u) =0, where @) =pHpw) =u—ud+au’.

(1)
See [14, 15] and references therein for the assumptions underlying this model, its derivation
from energy minimisation and the interpretation of the variables in dimensional versions
of this equations. Broadly speaking, u represents the deflection of the strut, primes denote
differentiation with respect to a co-ordinate x running along its length, and P is the strength
of a compressive load. We are interested in long struts and for that reason assume that x €
(—00, 00). The form of the restoring force f (1) provided by the foundation is taken to model
the effect of a restiffening nonlinearity after an initial destiffening of the foundation. The two
alternative forms of f describe respectively an asymmetric and symmetric form of foundation,
reflecting the difference between a one-sided supported structure and an embedded structure
(see Section 3.2 below for some motivation for the latter in structural geology).

For the rest of the present section, we shall consider the asymmetric nonlinearity fi,
where the coefficient » > 0 models the degree of restiffening compared with the initial
destiffening represented by the u? term (whose coefficient has been scaled to unity under
non-dimensionalisation). Graphs of the energy stored in the foundation for different values of
b are shown in Figure 1.

Let us briefly collect a few facts about Equation (1). First, since it is derived from energy
minimisation, it is a conservative system. Moreover, with x playing the role of time, the fourth-
order equation may be regarded (under a change of co-ordinates) as two-degree-of-freedom
Hamiltonian dynamical system with (constant) Hamiltonian ‘energy’ given by
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Figure 2. The behaviour of eigenvalues at the Hamiltonian—Hopf bifurcation.

P 1 [
H=uu" + -2—u’2 — ~2-u”2 + F(u), where F(u)= / f () dv. )
0

Second, the dynamical system is also reversible (in the sense of [16]), that is Equation (1) is
invariant under

R:W., u")— (—u/,—u"”) and x — —x. 3)

Finally, note that spatially homogeneous equilibrium configurations are given by the equa-
tions,

u=0, l—u+bu*=0. 4)

so that only the fundamental (unbuckled) flat state at u = O exists if & > 1/4. Linearizing
about this trivial equilibrium we find that eigenvalues A are given by A* + PA%2 + 1 = 0.
Hence for —2 < P < 2, we have a complex quadruple of eigenvalues +u + iw for some
i, @ > 0. We call such an equilibrium a saddle-focus. Moreover, as P increases through 2
these eigenvalues coalesce at i and become two imaginary pairs. Hence P = 2 corresponds
to the linear buckling load of the strut and corresponds to a Hamiltonian-Hopf bifurcation (see
Figure 2).

We are interested in deflections that decay to zero at both ends, i.e. u — 0 as |x| — oo.
These represent homoclinic solutions of the ODE. An important class of homoclinic solutions
is formed of those that are symmetric under the reversibility. A neat way of characterizing
such trajectories is that they are formed by a point of intersection of the unstable manifold
of the origin W*(0) and the symmetric section § := {(u,u’,u”,u"") : u' = u" = 0} of the
reversibility. Much is known about homoclinic solutions (symmetric or otherwise) to Equa-
tion (1) in the case when b = 0 [17]. Here a primary homoclinic solution (localized buckling
mode) bifurcates subcritically from P = 2 and survives all the way back to P = —o0. For
—2 < P < 2 there are also infinitely many N-pulsed localized solutions (which resemble N
copies of the primary placed end to end) for each N > 2, that lie on paths that do not bifurcate
from zero amplitude.

2.1. HAMILTONIAN-HOPF BIFURCATION: NORMAL FORM AND ASYMPTOTICS

Let us now consider more closely the behaviour of solutions to Equation (1), with f = f1, by
looking at what happens close to the linear buckling condition P = 2 through a study of the
truncated normal form for any dynamical system undergoing a Hamiltonian—Hopf bifurcation.
To use this normal form we introduce new complex coordinates A and B which are smooth
transformations of the original functions u, Uy, U,y and u.xy. Furthermore, we introduce a new
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time variable ¢ which is a smooth transformation of x. In this transformed set of coordinates
a homoclinic solution in which u(x) and its derivatives tend to zero as |x| — 00, transforms
to a homoclinic solution in which |A(¢)| and | B(#)| both tend to zero as [t| — oo. Similarly
fixed points and periodic solutions in the original variables transform to qualitatively similar
solutions. Thus the interesting dynamics of the original problem can be studied by looking at
the dynamics of the transformed system without explicitly giving the transformation.

Following [18, 19] the normal form of the Hamiltonian—Hopf bifurcation may be written
in the form

dA P
yril ia)A+B+iA<I>(/J,; |A|2,-’2-(AB~AB)>+R,,, (5)
B _ . . 2l 5 .

5 = lwB+iB @i |AP, S(AB - AB)) + AQ wi AP, 5(AB = AB) ) + Ra. (6)

Here @ and Q are polynomials with real coefficients which to lowest order take the form

Q(u; y, w) = pi+ pay + paw, QUi Yy, w) = —qip + G2y + 3w + gy’ @)

and R4 and Rp are terms of higher order. The parameter u is such that the bifurcation occurs
at & = 0. The truncated system with R4 = Rp = 0 is completely integrable with two first
integrals

14
K, =AB — AB, K2=|B|2—/Q(u,s,i/2K1)ds.
0

In what follows, the coefficients of @ are unimportant and g3 plays a subservient role. Also,
without loss of generality, ¢; > 0. Then it is only the sign of the coefficient ¢, that is important
[19]. However, when g, is small, one has to look at the sign of g.

For Equation (1), a calculation [7] of the transformation required to obtain the normal form
(5), (6) gives

1 19 3 12007 687295 327 ,
p=P-2 a=7. @=-gtib Gu=—Trb- e T ®
and
118 1 4 64
B Th M=ty REThm By

So g, changes sign at b = 38/27 and at this value ¢4 is positive. Hence the case where ¢,
passes through zero with ¢4 > 0 is of interest, and we shall regard w and g, (equivalently P
and b) as independent small parameters unfolding the codimension two point where they are
both zero. Note that Dias and Iooss [20] have analysed this transition for g4 < 0 (motivated
by interfacial water waves) which leads to entirely different dynamics.

Suppose first that ¢, is not small. Then making the scaling

Vinl

A = S=A0 e, B = lud

2
means that the linear dynamics are factored out and the problem is rescaled into the ‘slow
space’ equation

A= A (—qn+ 2147) (10)

Awye, x=./lul, )
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up to leading order in 4 < O [20]. Note that this equation is identical (up to a p-dependent
scaling on A and x) with that calculated in [14] using double-scale asymptotic expansions.
From the form of (10) one finds the small amplitude subcritical bifurcation of homoclinic
orbits from . = 0 provided the nonlinear coefficient is negative; that is, provided ¢> < 0, the
condition known as subcriticality in [19].

If g, is small, Dias and Iooss [20] show that taking

g=¢ ad A=0(?e), B=0(eVe), t=0(e), n=0(,

R4 = Ry = 0, and the form (7), then the ignored terms are of consistently higher order in
€. Using the integrals K, one can then integrate the problem explicitly to obtain a single
equation for y = |A|%:

laf?
dy

2
(a) =41y K2+/Q(u,s,K1)ds —K? | :=4G(y). (11)
0

This may be interpreted as the equation of a particle with zero total energy that is confined to
lie in a well with potential —4G(y). The function G is of the form

1
2
We want to understand solutions which decay to zero as [t| — oo and hence we take
K, = K, = 0. Thus, dividing out the double root of G at the origin leaves the quadratic
q2

_da 0
g(y)—3y+2_v qQu, (13)

which has two roots in the case of interest (g4, g1 > 0, g2 < 0). Figure 3 shows graphs of
G(y) as g, and p are varied. From the shape of the graphs we note that in parameter region 2
there are homoclinic orbits to the origin (note that region 5 does not correspond to homoclinic
orbits since y = |A|*> must be positive). This region has two boundaries: u = 0, which
is the Hamiltonian Hopf point; and where the discriminant of D, of g(y) is zero, ie. u =
—(3/16)¢3/(q194). Along the latter, there is a non-trivial double root of f, which corresponds
in the full system to a periodic orbit with non-zero amplitude. The shape of f then shows that
the homoclinic orbit to the origin has become a heteroclinic connection between the origin and
the periodic orbit. This heteroclinic orbit will play a crucial role in the numerical experiments
that follow.

1
GQyi m, Ki, K2) = 3049 + 507" = (quis = g3K1)y* + K2y — K} (12)

2.2. HETEROCLINIC TANGENCIES AND NUMERICS

For ¢, < 0, after incorporating the phase of the complex variables A and B, for the normal
form (5) (but still with R4, = Rp = 0) we have the subcritical (u < 0) bifurcation of a
phase-angle parametrized family of homoclinic solutions to a saddle focus at the origin. A
calculation in [19] shows that when remainder terms are included that break the completely
integrable structure of the normal form, two reversible homoclinic connections persist among
this family. In fact, if one could prove that these two orbits are transverse in the sense of
[21] (they almost certainly are), then Devaney’s construction [22] additionally gives infinitely
many N-pulse orbits for each N and each small u, although none of them bifurcates from
w=0.
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Figure 3. Summary of the behavior for g4 > 0.

Figure 4. Ilustrating the parameter unfolding of two successive heteroclinic tangencies between a saddle-focus
equilibrium O and a saddle-type periodic orbit L for a four-dimensional reversible Hamiltonian system. The
picture is drawn schematically by taking a formal Poincaré section within the zero level set of the Hamiltonian
function, S is the symmetric section, and unstable and stable manifolds are depicted respectively by solid and
broken lines. Each point at which W* (0) intersects S corresponds to a symmetric homoclinic orbit.
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Figure 5. Continuation in P of the primary and 2(2) homoclinic orbit from the reversible-Hopf bifurcation
at P = 2 of Equation (1) with b = 0.29. These and subsequently presented numerical results were com-
puted using the continuation code AUTO [23]. The L2-norm represented is a scaling of the vector norm of
@ (x), u’' (x), u” (x), u"” (x)).

Now let us consider what happens to the zero-to-periodic heteroclinic connection,
which for the normal form, Equation (5), occurs at an isolated parameter p-value, © =
—(3/ 16)q§ /(q194), and accounts for the sudden destruction of homoclinic orbits to the origin.
When normal-form breaking remainder terms are added, such a heteroclinic connection is
structurally unstable and would lead generically to a pair of heteroclinic tangencies occuring at
nearby parameter values. Figure 4 shows how such an unfolding leads to a strange bifurcation
sequence of homoclinic orbits (intersections between W*(0) and the symmetric section §).
This sequence has been computed numerically for the primary homoclinic solutions of (1) as
shown in Figure 5. The path corresponds to single curve of homoclinic orbits to the origin
undergoing a snaking curve, involving successive folds as the solution generates more and
more bumps (oscillations close to the periodic orbit). For a more detailed justification of the
construction in Figure 4 and why it leads to such a snaking curve, the reader is referred to
[8]. In fact, each of the two homoclinic orbits that bifurcate from P = 2 undergoes a snaking
sequence as in Figure 5. The linked nature of these two sequences is apparent in Figure 6a.
Note that the other branch coming from P = 2 may be considered as a 2-pulse orbit (2(2) in
the notation of [17]).

As b is decreased towards 38/27, the value at which g, = 0 for Equation (1), the oscil-
lations in P decrease in amplitude (see Figure 6a). Figure 6b shows the distribution of limit
points as u and ¢, are varied for Equation (1).

Note finally that to prove categorically for Equation (1), that the non-structurally-stable
heteroclinic orbit of the normal form breaks up in the way just described, would require a
careful Melnikov-type calculation.
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Figure 6. (a) Similar to Figure 5 but for b = 0.594. (b) Left and right-hand limit points at the top of the
snaking sequence of the primary homoclinic orbit as P and b are varied close to the codimension-two point
where P = 2,95 = 0. The solid line represents the theoretical curve calculated from the normal form,
a3 =162 - P)q194/3 .
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Figure 7. Continuation in P of the primary solution starting at the reversible Hopf for b = 0, b = (2/9)~, and
b = (2/9)7. The insets show that, as the transition b = 2/9 is approached, the orbits on the snaking bifurcation
curve approach multi-bump version of a ‘kink’ connection between 1 = 0 and u = 3.

2.3. KINKS — A DEGENERATE BIFURCATION DIAGRAM

For b = 0, it is known (at least numerically) that the primary branch born in the reversible-
Hopf bifurcation at P = 2 can be traced all the way back to P = —o0, including passing
through the ‘node focus transition’ of the origin at P = —2 (see [17] and references therein).
The transition that must take place between this and large b-values is partially summarized
in Figure 7. In fact the transition occurs at precisely b = 2/9, at which value there is a non-
trivial equilibrium at u = 3 that has exactly the same energy (value of the H) as the origin
(see Figure 1b). Therefore there is the possibility of heteroclinic connections between u = 0
and u = 3 (in the parlance of pattern formation, we shall refer to such solutions as kinks).
This indeed is found numerically to occur, and to account for the end of the snaking curve as
indicated in Figure 7.
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Figure 8. Kink solutions for b = 2/9.

/zv

Figure 9. Potential energy surface for the foundation, and flexible rod analogy.

Precisely at the parameter value b = 2/9 we have the curve of heteroclinic connections,
in P versus norm space, represented in Figure 8. The ‘primary’ kink solution survives all
the way back to P = —oo. In fact, at this b-value, the transformation ¥ — 2u/3 — 1 turns
Equation (1) with f = f; into that with f = f, and ¢ = 0. This equation in turn is the
steady state equation for the so-called extended Fisher—Kolmogorov equation, the existence
of kink solutions for which has been rigourously proved [24—27]. We may also interpret such
solutions physically. Figure 9 shows a sketch of energetically how such solutions might arise
for the strut model, by plotting the foundation energy F against ¥ and x, for P < —2 and
b < 2/9. The tensile load — P and bending curvature d*x /dx? both act to pull out the loop of
a model heavy flexible rod that hangs over the potential ridge. Note that the rod has no stiffness
in the vertical F sense, and similarly vertical differential displacement does not contribute to
the work done by the load. To balance these tendencies to straighten, the rod must drop to
a value of F that lies below the fundamental minimum at . = 0. If the second minimum at
u # 0 is only just below the first, a long length of loop is required, giving a stretched-out
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Figure 10. Typical sandwich panel, cross-section and material properties.
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Figure 11. Overall mode and localized mode definitions.

homoclinic form; as b — 2/9 this length must grow to infinity. A mechanism for heteroclinic
connection from the flat state at # = 0 to periodic states in the range —2 < P < 2 is thus bom
athb=2/9and P = 2.

3. Other Examples

We next turn to two other examples of buckling problems that appear to have the same qual-
itative features as those just outlined for the simple strut. After a brief discussion of global
Maxwell criteria of instability a third important example, the axially-compressed cylindrical
shell, is introduced in Section 5 as a final, practically-significant, illustration of the sequential
instability mechanism.

3.1. A SANDWICH STRUCTURE

Figure 10 shows a typical sandwich structure in compression with its geometric and material
definitions. The total potential energy of the system, V, is defined below in Equation (14).
This is formulated to describe the interactive buckling behaviour of such a structure — the
interaction being between an overall, Euler-type, mode and a local mode, which combine to
give localized buckling, where the degrees of freedom and the functions for the equations
are defined in Figure 11. Applying the calculus of variations on V, we can derive differential
equations for w and u; minimizing V with respect to the degrees of freedom g, ¢;, and A, we
obtain integral constraints all of which are detailed in recent papers [9, 10]. The structure tends
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to buckle in an overall mode first; this puts the faces under differing amounts of compression:
the functions w(x) and u(x) define the deflection of the face under greater compression once
the overall mode grows enough to induce localized buckling.

b4 rx 1 1
— 2 2 ) 02 -4
V= /{CX[A TRt T T3 Y

N br*  mx (. 1. 1.
— Au — §Aw2 - q'6LL sin —Z{ (u + —z—wz) + Zuw2:|

2

1 1 1 u uw 1, X
+ E‘sz - §k1w3 =+ Zk2w4 +G [}73 - —b— + ng + (q_; - q;)ZTTZCOSz —Z—
+ ( ) cos X (2

ds — 4 2 w bu

1 1
+Cy [vab (u - A+ 511)2) — Vy (L'tw + gwu')z)]

1 br? 1
+D [2A2 + Zu‘f‘ - (?_A +q,-7—LT— sin f-’-‘-) (u + ~u')2)

L 2
p*n*  mx ., ..
+ qtz'—z—l':z— Sll’l2 "E + u2 + uwz}
1 . nt | mx qin? rx 1.
+ 5E1 (w2 +2q3-L—2sm2 T) -P (—2——0032 -~ A)} dx. (14

Material properties are encompassed in the following definitions, including the critical load,
PC:

Ect? Etc G.cb E.bc
El]l = ——— D=" G=-"-2 (Ci=—72"
12(1 — v?) 2 2 T 201 = vewy)
c. - __Bc L ___EBEc
YT 2(1 = vywy)’ (1 — vevy)b’
2m2El 2G 2GL? Ce\ 7!
C = 4 = s="""(Dp+=X) .
P s T em ( 6) (15)

The restabilizing aspect in this structure comes into the behaviour of the core; this is usually
made of two or three-dimensional cellular materials such as polystyrene or polyurethane
foams. In compression, these materials tend to behave with an initially positive stiffness
(k), destabilizing to zero or slightly negative stiffness when the microscopic cells in the core
material buckle elastically (fall in stiffness represented by k; > 0), and finally restabilizing
when the adjacent cells collapse and bear against each other (rise in stiffness represented by
ko > 0) [28, 29]. This destabilization-restabilization is modelled by a cubic approximation,
as in Equation (1) with f = f;. We present numerically obtained solutions to the equations
derived from V for an aluminium faced panel: E = 69 kN/mm?, v = 0.3, t = 0.5 mm,
b = 50 mm, L = 500 mm, ¢ = 250 mm; and an orthotropic foam core with the following
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Figure 12. Post-buckling response of restabilizing sandwich panel.
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Figure 13. Localized mode profiles of restabilizing sandwich panel. Labels (A), (B) and (C) represent where these
occur on the post-buckling path of Figure 12a.

properties: E, = E, = 100 N/mm?, v, = v, = 02 and G, = 20 N/mm?; with the
nonlinearities: k; = 471 N/mm? and k, = 132 N/mm*.

Figure 12a shows the characteristic degenerating slope of the post-buckling response; here
however the sequential snap-back and restabilization are less obvious than in Figure 5, as the
overall load P is affected by a contribution from the unbuckled face. Figure 12b shows the
relative amplitude of the localized mode increasing and then decreasing in sympathy with the
snapping phenomenon. As the overall mode grows, the single humped solution is transformed
into three humps and then five humps and so on, as shown in Figure 13; as in Figure 5, double
and four humps do not appear because of prescribed symmetry. Figure 12c shows the chosen

core constitutive relation; there is a relatively flat zone before the cubic term begins to take
over in the restabilizing region.

3.2. A MODEL FOR GEOLOGICAL FOLDING

Layered rock structures develop an intriguingly wide array of folded patterns. Extensive
efforts have been spent in trying to understand the processes responsible for this variety;
however, up to the present day, the most successful models have been simple ones that give
modest insight into a specific situation. We refer the reader to [30, chapters 10-15] for a
discussion of various models and experiments.

One of such simple models is the strut on a foundation, Equation (1), which is often used
as a caricature for the folding process in the case of thin layers of rock embedded in thicker
layers. Here, both the strut and the foundation are assumed to be elastic; other possibilities

are an elastic strut on a viscous foundation [11, 12] or a viscous strut on a viscous foundation
[31].
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One of the main driving forces in the folding of geological layers is the movement of
tectonic plates: where two plates collide, the crustal material at the boundary is gradually
squashed and folded. With this in mind the folding 1s modelled as a prescribed end-shortening
process, where the strut buckles as a consequence of the shortening: as time evolves, the
shortening increases, and consequently the profile of the buckled strut evolves.

Equation (1) can be obtained as the Euler-Lagrange equation of a variational problem that
is inspired by this process. If we introduce the ‘strain energy’

| 3 i
Wiu) = ;flt ’+/ Fu).

and the ‘end-shortening’

1 o
Eu) = ;[u'“,

then we seek the profile u that minimizes the strain energy W under the condition that it has
the appropriate amount of end-shortening &: i.e. we seek to solve the variational problem

min W (u). (16)

Euy=a
If a profile u solves this problem, then there exists a Lagrange multiplier P such that
W) = P& ), (17)

where we write primes for gradients in function space. This equation is in fact identical to
Equation (1). This loading condition, where the end-shortening is controlled and the load is a
derived quantity, is referred to as ‘rigid loading’: this can be contrasted with ‘dead loading’,
where the load is controlled without regard to the end-shortening.

We can now create an ‘evolution’ by varying the end-shortening A and observing the
ensuing profiles. Since the situation is simpler for the nonlinearity f> than for f; (because
of the additional symmetry u — —u present in f>) we choose f = f, for the extent of this
section.! Note that the destiffening-restiffening property of f implies that

1. for small s > 0, the measure of stiffness, f(s)/s, decreases as s increases;
2. for larger 5. f(s)/s increases again.
This has consequences for the ‘evolution’ obtained by varying A in Equation (16):
1. For small A, minimizers of Equation (16) are small in amplitude, and therefore f(s)/s is
decreasing in s over the range of u. This leads to localized profiles.
2. As A increases, the amplitude of the profiles increases, and attains values for which f(s)/s
is increasing in s.
In preliminary numerical experiments it is observed that when the ‘evolution” enters into this
second phase, the amplitude grows to a limit, and further increases in A are followed by a
widening of the profile. A roughly periodic section arises, flanked by exponentially decaying
tails, and a further increase in A causes the number of oscillations in the periodic section to
increase.

U The choice of this particular function for the stress-strain relationship of a foundation composed of rock is
not as far-fetched as it may seem. The geometry of a deformed layer introduces nonlinearities that Equation (1)
does not take into account: these have a destiffening etfect [32]. For larger deformations a geometrically nonlinear
elastic foundation will show a locking-up behaviour that can be interpreted as a restiffening etfect. A nonlinearity
of type f> is a way of introducing these two qualities in the much simpler Equation (1).
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Figure 14. The bifurcation diagram of the homoclinic starting at P = 2, for nonlinearity f(u) = u —u343 /1013,

There is a strong resemblance between this evolution and the form of the solutions that
are found along the bifurcation diagram uncovered in Section 2, for example Figure 5. In
Figure 14 we draw a bifurcation diagram for the nonlinearity f,. Although the two figures
are similar in appearance, there is a significant difference. In Figure 5 both solution curves
consist of even solutions; for the nonlinearity f>, with the additional symmetry u — —u,
these two sets of solutions are identical (up to a reflection u — —u) and we draw them as one
curve in Figure 14 (continuous line). Because of the additional symmetry, there is also a new
reversibility in the problem:

R:(u,u") — (—u,—u") and x — —x,

(compare with Equation (3)). This leads to a second curve of solutions, bifurcating from
P = 2, which are odd (broken line). Further numerical results have found that the bifurc-
ation sequence for f; is the qualitatively similar to that for f; with the equivalent of the kink
transition at b = 2/9 corresponding to & = 3/16. The degenerate Hamiltonian Hopf which
occurs for f; at b = 38/27 has no analogue for f, other than formally as ¢ — oo.

We believe (but have as yet no proof) that the minimizers of Equation (16) all lie on the
bifurcation diagram in Figure 14. Every horizontal line in this figure intersects the diagram
at least twice, and for large values of A, by the sloping nature of the curves, more than twice.
The oscillations in the graph appear to be centred about a mean value P which is close to the
Maxwell load which will be described and computed in the next section. At every value of
A there are therefore several candidates for the global minimizer. In the following section we
first explore global minimization issues via a simplified caricature, before investigating more
closely the global minimizer for the strut model and its relation to the above diagram.

4. Maxwell Criterion and Global Stability

Let us now turn to the question of which solutions under conditions of controlled end-
shortening may be stable. For an environment rich with underlying disturbance, interest
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Figure 15. (a) Anti-integrable chain of linked elements. tb) Tri-lincar response characteristic for single ele-
ment. involving regimes of infinite stiffness, negative stiffness, and restabilized positive stiffness. (¢} Combined
responses.

naturally focuses on the global energy minimum to define the most likely equilibrium con-
figuration. The so-called Muxwell criterion, familiar from work on phase transitions (see,
for example, [33, p. 53]) is then the controlling mechanism. The following model defines a
limiting situation which suggests that the classical Mavwell load, where under dead loading
conditions the global minimum switches from the pre-buckled to the post-buckled state, holds
considerable significance for rigid loading also. Returning to the strut model, it is then demon-
strated that the so-called ‘zero-energy’ periodic solution [34], which matches stored energy
with the pre-buckled state and sits at the Maxwell load, is the limit of global minimizers for
the homoclinic solutions as end-shortening approaches infinity.

4.1. PHYSICAL INTERPRETATION: A SIMPLE LINK MODEL

Consider the anti-integrable chain of linked but uncoupled elements shown schematically in
Figure 15a. Individual elements are considered as black boxes each with the response of
Figure 15b. In the chain all elements carry the same load P, but deflection in one has no
effect on, nor is it affected by, the others. Adding stiffnesses according to a reciprocal law,
the combined stiffness on a rising path, R,,, when m individual elements are at stiffness k>, is
given by

I m

Rm B k2

and that of a falling path, F,,. when m elements are at stiffness k> but one is unloading at
stiffness —k,. is given by

(18)

—_— = — = —— - — 19

Fn ka ki Rn Kk U9
Elements are assumed to trigger one-by-one in a random order determined by small imperfec-
tions, giving the fanning sequence of equilibrium states shown as light lines in Figure 15¢, in
which the load oscillates between the upper and lower loads, Py and Py, that characterize the
response of a single element.
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(2) (b)

Figure 16. Maxwell criterion in (a) dead loading; (b) rigid loading. For each, A; = A5 signals a change in global
energy minimum from one rising path to the other.

A general position in the fan is shown in Figure 16. Under conditions of dead loading
(Figure 16a), at load Py, the energy hump to be overcome to initiate the next instability is
given by area A, whereas A, represents potentially a release in energy, as in this range the
load is greater than that necessary to retain equilibrium. The classical Maxwell load Py is
defined as the load at which the global energy minimum swaps from one equilibrium state to
the other — when A; = A; and energy levels on the two rising paths are the same. Simple
geometry shows that

1/ 1 1 1/1
Al = = ——— Py — P LR Py — P 2,
l 2 (Rm Fm) ( v M) 2 (kl) ( v M)
1 1 1 1/1 1
Ay = — —— ) (Py—P) ===+ — ) (Py— P)>. 20
? 2(Rm+1 Fm) M L) 2(k1+k2)( M L) ( )

A) = Aj then gives,

Py — P, k
L S T Q1)
Py — Py, ko

Ay, A, and Py are all seen to be independent of m, so under dead loading and the necessary
disturbance conditions, the Maxwell load Py, signifies the limit of load carrying capacity.
Once one element fails they all will fail, albeit in random sequence.

Under rigid loading conditions, transfer takes place when A; = A, of Figure 16b, as the
global minimum switches from load P} on the upper to P} on the lower equilibrium state.
Simple geometry now gives,

* Fm_Rm * k

PG~ Py == (PU—PM)=-m—]2q(PU—Pj’;),

. . Fu—R, ey + k) o,
PM—PL=—Tm—'ﬂ(Pf4—PL)=7CI—(Im+—21)(PM—PL)»
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1 [Fp— R 2 1 (mk—k 2
=g () - = 5 (M) o - i

mki
1 Fm*RmH) 2 1<(k1+k2)(mk1~k2)) 2
Ay = = (2l (px P = P —P) . (22
2 2( F2 (P = Pu)" =3 (m + 1) Kk, (Pi = Pr) 22)

A1 = Az now gives

Py — Py m k
SR (1 + —1), (23)

P M= P m+1 ka
and Py, P and P} all depend on m. However, comparison with the equivalent form for dead
loading (21), shows that as m — 00, Pj; — Py . From the expressions for Pj; — Pj;; and
Py, — Pf above, it is clear that Pj; and Py also both approach Py as m — oo. This expected

form of response under rigid loading is shown as thick lines in Figure 15c¢. Under rigid loading
conditions, as the number of cells increases, all instability accumulates onto the Maxwell load.

4.2. THE MAXWELL LOAD FOR GENERAL SYSTEMS

Imagine the chain of the previous section encapsulated in a black box. We can apply a load
and measure the response in the form of the total shortening of the chain. Under dead-load
conditions the response may be very simply described by

1. no response (no shortening) if P is small
2. as P passes a critical value, the system suddenly adopts a large deflection.

The word ‘suddenly’ is used advisedly — the large-deflection response does not appear
smoothly, via smaller deflections, but in the form of a jump. With enough external disturbance,
the critical value of the load is Py, the Maxwell load under dead-load conditions. If the ‘large
deflection’ is interpreted as a failure, then Py, is the limit of load-carrying capacity.

This point of view allows us to generalize the concept of Maxwell load to general extended
systems. The response of the strut-on-foundation model under a dead load P is obtained by
minimizing the Lagrangian (or total potential energy [35, p. 50])

L) :=W(u)— P&(u).

Here W and & are the same as in Section 3.2, representing the strain energy and the end-
shortening. The second term in L is the work done by the load in shortening the strut. We
recall that Equation (1) can be written as W'(u) — P&’ (u), so that a stationary point of L is
also a solution of Equation (1).

When P is small, the Lagrangian L(u) is non-negative for any u. Therefore the trivial
response, u = 0, is the global minimizer. When P passes a threshold value there will be pro-
files with a negative Lagrangian, so that the zero response is no longer optimal and minimum
energy is achieved in a non-zero response. We define the Maxwell load for this system to
be this threshold value of P, i.e., Py is the lowest value of P for which there exist u with
L(u) < 0. A different way of writing this definition is

W(u)

Py := min

ut0 &)’ @4
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Figure 17. A section between two stationary points is replicated.

where the minimum is taken over all functions for which the integrals in W and & have
meaning.

Let us now consider definition (24) from a different point of view. Suppose that u is a
periodic function that minimizes the ratio of strain energy to end-shortening, W (u)/&(u),
where the integrals are taken over a period. (Below we shall show that the restriction to
periodic functions is natural — that every minimizer of this ratio must, in fact, be periodic.)
Taking the gradient of this ratio, we find

(VWY _ 1 o /
0= (g(u)> = 8(u)z(é?(u)W W) — W)€ ()

which implies that

%
W (u) = —8-(%) &' ).

So by comparing this to Equation (17) we find that u solves Equation (1), and in addition we
know that

_ W(u)
T W)

(25)

This is equivalent to the statement L(u) = 0.
Combining the argument above with definition (24) we find that the Maxwell load Py
reunites a number of interesting features:

1. Py is the lowest load that produces a non-trivial response;

2. Py is numerically equal to the lowest possible ratio of strain energy to end-shortening,
W/g;

3. There exists a periodic function that achieves this minimal ratio, that satisfies Equation (1)
for the load P = Py, and has L = 0.

We still need to argue why a minimizer of the ratio W /€ is necessarily periodic. Suppose
that a function u minimizes the ratio, and that u tends to zero at £o0o. We will show that we
can construct from the function u a periodic function & with a better ratio W/&.

We divide the real line into segments [x;, x;.1), where the x; are stationary points of «, and
compare the value of the ratio W /& when calculated over such segments instead of over R. It
is to be expected that the ratio is not the same for all segments; some segments will have a ratio
higher than W/§€ calculated over the whole of R, and some a lower ratio. Taking a section with
a lower ratio, we construct a periodic function # by gluing segments together, as in Figure 17.
The periodic function u then satisfies, by construction, W (i)/ & (&) < W (u)/&(u). This shows
that a minimizer of the ratio necessarily is periodic.
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Figure 18. The Maxwell load as a function of « (see the text for details).

We have shown above that the Maxwell load is associated with a periodic solution of
Equation (1) that satisfies L = 0. Since this solution is found by minimizing a functional
over all periodic functions, the period is a free parameter in this minimization. This freedom
implies that in addition to L = O, the minimizer has a zero Hamiltonian: this follows by
scaling the period and minimizing the ratio with respect to this scaling. We can now calculate
the Maxwell load numerically by seeking a periodic solution satisfying L = H = 0; see
Figure 18, for f(u) = f, = u — u® + au’. For this nonlinearity, it is easy to show that
a = 3/16 is a critical value where the non-zero fixed points |u| = 2 solving f(u) = 0 have
zero Hamiltonian and can thus be a limit points of a heteroclinic connection with the origin .
The graph of the Maxwell load extends just below this value before turning back with a rapid
increase in the period of the solution as it approaches 3/16 from below. For large values of o
we have that P — 2 and we can show further that the amplitude of the periodic solution in
this limit is proportional to 1/./c.

4.3. THE ROLE OF THE MAXWELL LOAD UNDER RIGID LOADING CONDITIONS

Section 4.1 emphasizes the importance of the Maxwell criterion, not just under the dead
loading conditions for which it has been introduced. In the previous section we defined the
Maxwell load for a general system under dead loading; here we will show that, as in the case
of the chain, the Maxwell load also has a role to play in the behaviour of the system under
rigid load.

The thin line in Figure 19 is an impression of the continuous line in Figure 14 (the dashed
line corresponds to odd solutions, which we do not consider at this point). The figure shows as
thick lines the global minimizer under evolving end shortening. This illustrates the route taken
by the system if buckling occurs at the point where energy stored in the foundation is sufficient
in magnitude to provoke an instability; an energy hump might remain to be negotiated, but
background disturbance is taken to be enough to initiate the jump once the energy level in the
post-buckled position is less than that in the pre-buckled state. The system thus always tracks
the global energy minimum.

With the anti-integrable chain in mind, we recognize the way the sloping of the curls in this
figure reduces the height of the jumps as & becomes large. Thus we postulate the conjecture
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Figure 20. u, provides an upper bound for the ratio W/€ of the solution of Equation (16).

As & — 00 the load P of the global minimizers converges to the Maxwell load Py.

In the previous section it was shown that the Maxwell load under dead-loading conditions
(Py) is associated with the periodic minimizer of the ratio W/€. The relevance of the ratio
W /€ to problem (16) becomes apparent when we note that as & — o0, solutions of Equa-
tion (16) minimize this ratio. This can be recognized by taking the periodic function u,, that
minimizes the ratio, and defining a sequence of functions

uu(x) = n(x/wuy(x),

where 7 is a fixed cut-off function withn = 1 on [—1, 1] and n = 0 on (—00, —2] U [2, c0).
These functions u,, are shown in Figure 20a. For any given A we can choose a y such that
&(uy) = X; clearly the minimizer z of (16) then satisfies W (z) < W(u,), and W(u,)/€(uy)
is an upper bound for the constrained minimum ratio at &(z) = A. It is directly calculated that
W (u,)/&(u,) converges to the global minimum ratio W (uy)/ & (uyy) as u — o0o. Therefore
the solutions of Equation (16) must also converge to that minimum as A — 0.

We have shown in the previous section that a minimizer of the ratio W/& is necessarily
periodic (in fact the minimizer is unique). The fact that in the limit A — o0, the solutions of
problem (16) achieve the minimum of the ratio therefore suggests that the profile must come
to resemble this periodic solution strongly. The mechanism for doing so is immediate from
Figure 14: as the value of & increases, the solutions spawn additional oscillations, giving rise
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to a long periodic section flanked by two tails. This periodic section is in the limit exactly the
minimal periodic solution ;.

5. Cylindrical Shell Buckling

Buckling of a long thin axially loaded cylindrical shell is an archetypical example of a long
structure which exhibits an unstable response that then restabilizes. We examine that response
here in the context of cellular buckling and the Maxwell load. A classical formulation for a thin
cylindrical shell of radius » and thickness ¢ is given by the von Kdrmén—Donnell equations:

K2V4w + AWyy — p¢xx = w.rx¢yy + w}')’¢.Y-r - 2wx."¢x}"
2
V4¢ + PWxx = (wxy) — Wyx Wyy, (26)

where V* is the two-dimensional bi-harmonic operator, x € R is the axial and y € [0, 27rr)
is the circumferential coordinate, w is the outward radial displacement measured from an
unbuckled state, and ¢ is a stress function [36]. Parameters appearing in Equation (26) are the
curvature, p = 1/r, the geometric constant, x> = t2/12(1 — v?), where v is Poisson’s ratio,
and loading parameter 1. The parameter A here plays the role of P in the preceding sections.
These equations are derived form the minimization of an energy functional V comprising
bending and membrane stretching energy and work done by the load A.

We discretize the von Kdrmén-Donnell equations (26) in such a way as to exploit natural
symmetries in the problem. Experimentally a well defined number, s, of periodic waves is ob-
served circumferentially [36, 37] in the buckled deformation, corresponding to an invariance
under rotation of 27 /s. Hence we write

wx, y) =Y an(x) cos(mspy);  $(x,y) = Y _ byu(x)cos(mspy), s eN.

m=0 m=0

Substituting into the von Kdrman—Donnell equations and taking the L? inner product with
cos(mspy), we obtain a system of nonlinear ODEs for the Fourier modes a,, and b,, for
m = 0,...,00. The Galerkin approximation is formed by taking m = 0,..., M — 1 for
some finite M giving a system of 8M first-order ordinary differential equations which we
may formally write as

mo_ I i VAN
ay' = Gy m(m, ay,, ay, ', by, by, by, by);

bg{l — Gz,m(am, a;n, a/l a/l/ b bl b// bl/l),

me* “mo> VM Yme Y Ym

m=0,1,2,....M -1, 27

where superscripts denote differentiation with respect to x. Further details on the discretization
may be found in [38]. The system (27) of fourth-order ODEs is then similar in nature to the
single ODE (1), although more complicated. For the system (27) there are two natural sym-
metries in x both of which are observed experimentally in the cylinder. In fact, Equation (27)
is reversible about each of these symmetries and this can be exploited in the computations.
One form of symmetry, termed cross-symmetric, is even in even Fourier modes and odd in
odd modes. The symmetric form is a straightforward symmetry in which all Fourier modes
are even. In [8] preliminary results were presented on the cylinder for a cross symmetric
solution with s = 11. The characteristic snaking bifurcation diagram, similar to Figure 7
for the asymmetric case f;, was found and cellular buckling of the cylinder was observed.
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Figure 21. Bifurcation diagram showing end-shortening of the cylinder against load A for s = 9 waves
circumferentially.

Here we examine the symmetric case, which is similar in nature to the case f> discussed in
Section 4. Note that, for the cylinder, these two cases exist without the need to change the
form of the nonlinearity, illustrating the more complex nature of the ODEs (27).

For details on the numerical solution of the boundary-value problem solved for these
computations, see [38] and for errors in the truncation of the length X, see [39].

In Figure 21 we have plotted the load parameter A against end-shortening (measured by
arc-length) for s = 9 circumferential waves. Although it appears from the bifurcation diagram
that there is one single form of symmetric solutions for the system (27) of ODEs there are in
fact two. This is evident from Figure 22 in which we have plotted the Fourier modes a; and
by fork = 0.1,...,5atx = 4.5 x 107 and for arc-length= 1.00306 for two different
symmetric solutions. In panel (a) of the figure we see that the odd modes are at 2 maximum
at the symmetric section at X = 500 whereas in panel (b) we see that the odd modes are at a
minimum at X = 500.

In Figure 23a we have reconstructed the displacement and stress function on the cylinder
for the Fourier modes shown in Figure 22. Note that the two different symmetries of the ODEs
(27) in fact correspond to the same buckled cylinder solution — one is simply a rigid rotation
of the other.

Each time a maximum is passed in the snaking bifurcation diagram of Figure 21, an
extra ‘hump’ appears in the solution. In Figure 23b we have plotted the reconstructed the
displacement and stress function on the cylinder for the same value of A = 4.5 x 107 but
at an arc-length of 1.0058022, i.e. after passing through another maximum and picking up a
further cellular buckle.
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Figure 22. Fourier modes for a; (left) and by (right) as computed from (27) for two different forms of symmetry:
(a) odd solutions abut X = 500, (b) even solutions about X = 500.

Note that the results produced here for the symmetric case and in [8] for the cross-
symmetric case are in subspaces corresponding to s = 9 and s = 11 waves circumferentially.
The lower bound of the snaking behaviour observed for the cylinder is of practical interest
since, for a given subspace, it gives a lower bound on the Maxwell load and on the load at
which the cylinder may be expected to first undergo an unstable response. However, in the
full system the situation is far more complicated since solutions will jump from one subspace
to another and hence experimentally the snaking bifurcation diagram of Figure 21 is not fully
observed.

6. Conclusion

This paper has contained a rag bag of different methods and problems which together appear to
point towards a fundamental new explanation of the postbuckling behaviour of structures with
destiffening then restiffening characteristics. Some of the details and connectivities between
the different strands have not been fleshed out fully, and these are left to future work. However,
a coherent picture appears to be emerging, which can be summed up in Figure 19. Under rigid
end-displacement, a long structure buckles in a cellular manner between a maximum and
minimum load (which are both less than the linear critical load) which bound the oscillating
postbuckling curve. If the structure were able to jump to the global minimum solution, then the
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path for large displacement will become approximately flat at the Maxwell load. Of course,
many real structures will not undergo such a sequence due, for example, to plastic necking,
other microscopic effects, or (as for the cylinder) a jump into into an entirely different mode
of buckling. Nevertheless, we appear to have found a ubiquitous postbuckling scenario, and
future work by some of us will illustrate this in yet more physical situations. Examples already
known to us include the wrapping up of a torsionally buckled rod constrained to lie inside a
cylindrical pipeline, and a model for kink banding in compressed layered materials.

A particularly gratifying feature of this work is that so many different methods — normal
form analysis, asymptotics, numerics, physical argument, variational arguments, and a link
model caricature — have all played a role in the explanation.

Acknowledgement

The authors are indebted to Boris Buffoni for useful discussions.

References

1. Champneys, A. R., Hunt, G. W,, and Thompson, J. M. T. (eds.), Localization and Solitary Waves in Solid
Mechanics, special issue of Philosophical Transactions of the Royal Society of London Series A 355, 1997,
2073-2213.

2. Lord, G. J., Champneys, A. R., and Hunt, G. W., ‘Computation of localized post buckling in long axially-
compressed cylindrical shells’, Philosophical Transactions of the Royal Society of London Series A 355,
1997, 2137-2150 (special issue on Localization and Solitary Waves in Solid Mechanics, A. R. Champneys,
G. W. Hunt, and J. M. T. Thompson (eds.).)

3. Thompson, J. M. T. and Champneys, A. R., ‘From the helix to localized writhing in the torsional post
buckling of elastic rods’, Proceedings of the Royal Society of London Series A 452, 1996, 117-138.

4. Goriely, A. and Tabor, M., ‘Nonlinear dynamics of filaments III - Instabilities of helical rods’, Proceedings
of the Royal Society of London Series A 453, 1997, 2583-2601.

5. Mielke, A. and Holmes, P., *Spatially complex equilibria of buckled rods’, Archive Rational Mechanics and
Analysis 101, 1988, 319-348.

6. Hunt, G. W. and Everall, P. R., ‘Amold tongues and mode jumping in the supercritical post-buckling of an
archetypal elastic structure’, Proceedings of the Royal Society of London Series A 455, 1999, 125-140.

7. Woods, P. D. and Champneys, A. R., ‘Heteroclinic tangles in the unfolding of a degenerate Hamiltonian
Hopf bifurcation’, Physica D 129, 1999, 147-170.

8. Hunt, G. W, Lord, G. J., and Champneys, A. R., ‘Homoclinic and heteroclinic orbits underlying the
post-buckling of axially-compressed cylindrical shells’, Computer Methods in Applied Mechanics and
Engineering 170, 1999, 239-251.

9. Hunt, G. W. and Wadee, M. A., ‘Localization and mode interaction in sandwich structures’, Proceedings of
the Royal Society of London Series A 454, 1998, 1197-1216.

10. Wadee, M. A. and Hunt, G. W., ‘Interactively induced localized buckling in sandwich structures with core
orthotropy’, ASME, Journal of Applied Mechanics 65, 1998, 523-528.

11. Budd, C. J. and Peletier, M. A., ‘Self-similar fold evolution under prescribed end-shortening’, SIAM Journal
on Applied Mathematics, 1998, to appear. Preprint 98/08, Department of Mathematical Sciences, University
of Bath.

12. Budd, C. J,, Hunt, G. W., and Peletier, M. A., ‘Approximate self-similarity in models of geological folding’,
Journal of Mathematical Geology, 1998, to appear. Preprint 98/13, Department of Mathematical Sciences,
University of Bath.

13. Hilali, M’F,, Métens, S., and Dewel, G., ‘Pattern selection in the generalised Swift-Hohenberg model’,
Physical Review E 51, 1995, 2046-2052.

14. Hunt, G. W, Bolt, H. M., and Thompson, J. M. T., ‘Structural localization phenomena and the dynamical
phase-space analogy’, Proceedings of the Royal Society of London Series A 425, 1989, 245-267.



35.
36.

37.

38

39.

Cellular Buckling in Long Structures 29

Hunt, G. W. and Wadee, M. K., "Comparative Lagrangian formulations for localized buckling”, Proceedings
of the Roval Sociery of London Series A 434, 1991, 485-502

Devaney, R. L, "Reversible ditfeomorphisms and flows”, Transactions of the American Mathematical Sociery
218, 1976, 89-113.

Butfoni, B., Champneys, A, R and Toland, J. F.. *Bifurcation and coalescence of a plethora of homoclinic
orbits for a Hamiltonian system’. Journal of Dvnamics and Differential Equations 8, 1996, 221-281.
Elphick, C., Tirapegui. E., Brachet, M., Coullet. P. and fooss, G., ‘A simple global characterisation for
normal forms of singular vector tields”, Phyvsica D 29, 1987, 95-127.

looss, G. and Péroueme, M. C.. "Perturbed homochinic solutions in reversible 1:1 resonance vector fields”,
Journal of Differential Equarions 102, 1993, 62-88.

Dias, F and looss, G, *Capillary-gravity interfacial waves in infinite depth’, European Journal of Mechanics
B — Fluids 15, 1996, 367-393.

Buffoni. B. and Séré, E.. *A global condition for quasi-random behaviour in a class of conservative systems’,
Communications on Pure and Applied Mathematics 49, 1996, 285-305.

Devaney, R. L., "Homoclinic orbits in Hamiltonian systems”, Journal of Differential Equations 21, 1976,
431438

Doedel. E.J., Champneys. A. R, Fairgrieve, 1. F., Kuznetsov, Y. A, Sandstede, B.. and Wang, X.-1.,
"AUTOYT: Continuation and bifurcation software for ordinary ditferential equations’, 1997, (Available by
anonymous FIP from ftp.concordia.ca in ‘pub/doedel auto.)

Hoter. H. and Toland, J. E., "On the existence ot homoclinic, heteroclinic, and periodic orbits for a class of
indefinite Hamiltonian systems’, Marhematische Annalen 268, 1984, 387-403.

Peletier, 1. A. and Troy, W. C.. "A topological shooting method and the existence of kinks of the Extended
Fisher-Kolmogorov equation’, Topological Methods in Nonlinear Analvsis 6, 1996, 331-355.

Kalies, W. D. and Vandervorst, R. A. C. M., "Multitransition homoclinic and heteroclinic solutions of the
extended Fisher-Kolmogorov equation’, Journal of Differential Equations 131, 1996, 209-228.

van den Berg, J. B.. "Unigueness of solutions for the Extended Fisher-Kolmogorov equation’, Compres
Rendus de L'Académie des Sciences Série 1 326, 1998, 447452,

Gibson, L. J. and Ashby, M. F., “The mechanics of three-dimensional cellular materials’, Proceedings of the
Roval Society of London Series A 382(1782). 1982, 43-59.

Gibson, L. J., Ashby, M. F., Schjaer. G. S., and Robertson, C. L, *The mechanics of two-dimensional cellular
materials’, Proceedings of the Roval Sociery of London Series A 382(1782), 1982, 25-42.

Price, N. J. and Cosgrove. J. W., Analvsis of Geological Structures, Cambridge University Press, Cambridge,
1990.

Johnson, A. M. and Fletcher, R. C., Folding of Viscous Layers, Columbia University Press, New York, 1994.
Humt, G. W., Wadee, M. K., and Shiacolas, N., ‘Localized elasticae for the strut on the linear foundation’,
ASME, Journal of Applied Mechanics 60, 1993, 10331038,

Zeeman, E. C.. Catastrophe Theory: Selecred Papers, 1972--1977. Addison-Wesley, Reading, MA, 1977.
Hunt, G. W. and Lucena Neto, E., "Maxwell critical loads for axially-loaded cylindrical shells’, ASME,
Journal of Applied Mechanics 60¢3), 1993, 702-706.

Thompson, J. M. T. and Hunt, G. W., A General Theory of Elastic Stabilitv, Wiley, London, 1973,

Koiter, W. T., *On the stability of elastic equilibrium’, Ph.D. Thesis, University of Delft, 1945. English
Translation: Technical Report AFFDL-TR-70-25 Air Force Flight Dynamics Laboratory, 1970.

Yamaki, N., Elastic Stability of Circular Cyvlindrical Shells, Applied Mathematics and Mechanics, Vol. 27,
Elsevier, Amsterdam, 1984,

Lord. G. J., Champneys, A. R., and Hunt, G. W., *Computation of homoclinic orbits in partial difterential
equations: An application to cylindrical shell buckling’, SIAM Journal on Scientific Computing, 1998, to
appear.

Lord, G. J., Peterhotf, D., Sandstede. B., and Scheel, A., “Numerical computaton of solitary waves in
semilinear elliptic problems on infinite cylinders’. SIAM Journal on Numerical Analysis, 1998, submitted.



